Neural network-based iterative learning control for trajectory tracking of unknown SISO nonlinear systems
摘要:
This paper proposes a neural network-based (NN-based) data-driven iterative learning control (ILC) algorithm for the tracking problem of nonlinear single-input single-output (SISO) discrete-time systems with unknown models and repetitive tasks. The control objective is to make the output of the system track the reference trajectory in each iteration process. Therefore, at each relative time during every iteration process, a generalized regression neural network (GRNN) is used as the estimator to solve the key parameters of the system, and a radial basis function neural network (RBFNN) is used as the controller to solve the control input. Compared with the traditional ILC algorithm, the two complex solving processes, i.e., dynamic linearization and criterion function minimization, are replaced and simplified into the iterative training of GRNNs and RBFNNs. The proposed algorithm is out-of-the-box and uses a point-to-point method to calculate the control input for each relative time of the system iteration, driving the tracking error of the system to approach zero. In addition, it is proved that the tracking error of the system under the proposed control algorithm is uniformly ultimately bounded. Finally, a numerical example shows the effectiveness and superiority of the control algorithm, and a path tracking experiment of an unmanned vehicle further verifies its practicability.
展开
DOI:
10.1016/j.eswa.2023.120863
年份:
2023
通过文献互助平台发起求助,成功后即可免费获取论文全文。
相似文献
参考文献
引证文献
辅助模式
引用
文献可以批量引用啦~
欢迎点我试用!

